SOLUTIONS FOR ADMISSIONS TEST IN
 MATHEMATICS, JOINT SCHOOLS AND COMPUTER SCIENCE
 WEDNESDAY 5 NOVEMBER 2008

Mark Scheme:

Each part of Question 1 is worth four marks which are awarded solely for the correct answer.
Each of Questions 2-7 is worth 15 marks

QUESTION 1:

A. As $y=2 x^{3}-6 x^{2}+5 x-7$ then

$$
y^{\prime}=6 x^{2}-12 x+5 .
$$

The quadratic y^{\prime} has discriminant $12^{2}-4 \times 6 \times 5=24>0$ and hence the equation $y^{\prime}=0$ has two distinct real roots. The answer is (c).
B. As $\pi<10$ then

$$
L=\log _{10} \pi<1
$$

So

$$
\sqrt{\log _{10}\left(\pi^{2}\right)}=\sqrt{2 L}>\sqrt{L \times L}=L ; \quad\left(\frac{1}{\log _{10} \pi}\right)^{3}=L^{-3}>1 ; \quad \frac{1}{\log _{10} \sqrt{\pi}}=\frac{2}{L}>2
$$

The answer is (a).
C. We will write $c=\cos \theta$ and $s=\sin \theta$ for ease of notation. Eliminating y from the simultaneous equations

$$
c x-s y=2, \quad s x+c y=1 ;
$$

we get

$$
2 c+s=c(c x-s y)+s(s x+c y)=\left(c^{2}+s^{2}\right) x=x
$$

and similarly eliminating x we find

$$
c-2 s=(-s)(c x-s y)+c(s x+c y)=\left(s^{2}+c^{2}\right) y=y .
$$

Hence the equations care solvable for any value of θ. The answer is (a).
D. By the remainder theorem when a polynomial $p(x)$ is divided by $x-1$ then the remainder is $p(1)$. So the required remainder here is

$$
1+3+5+7+\cdots+99=\frac{50}{2}(1+99)=2500
$$

as the series is an arithmetic progression. The answer is (b).
E. The highest power of x in $\left(2 x^{6}+7\right)^{3}$ is x^{18} and in $\left(3 x^{8}-12\right)^{4}$ is x^{32} so the highest power in $[\cdots]^{5}$ is $\left(x^{32}\right)^{5}=x^{160}$. The highest power of x in $\left(3 x^{5}-12 x^{2}\right)^{5}$ is x^{25} and in $\left(x^{7}+6\right)^{4}$ is x^{28}, so that the highest power of x in $[\ldots]^{6}$ is $\left(x^{28}\right)^{6}=x^{168}$. Thus the highest power of x in $\{\ldots\}^{3}$ is $\left(x^{168}\right)^{3}=x^{504}$. The answer is (d).
F. Suppose that, when the trapezium rule is used to estimate the integral $\int_{0}^{1} f(x) \mathrm{d} x$, an overestimate of E is produced. If the same number of intervals are used in the following calculations then:
(a) to estimate $\int_{0}^{1} 2 f(x) \mathrm{d} x$ an overestimate of $2 E$ will be produced, as the relevant graphs have been stretched by a factor of 2 and all areas doubled;
(b) to estimate $\int_{0}^{1}(f(x)-1) \mathrm{d} x$ an overestimate of E will be produced, as the relevant graphs have been translated down by 1 and all areas remain the same;
(c) to estimate $\int_{1}^{2} f(x-1) \mathrm{d} x$ an overestimate of E will be produced, as the relevant graphs have been translate right by 1 and all areas remain the same;
(d) to estimate $\int_{0}^{1}(1-f(x)) \mathrm{d} x$ an underestimate of E will be produced, as the relevant graphs have been reflected in the x-axis - turning the overestimate to an underestimate - and translated up by 1 , which changes nothing with regard to areas. The answer is (d).
G. As $4 x-x^{2}-5=-(x-2)^{2}-1$, then $y=\left(4 x-x^{2}-5\right)^{-1}$ is always negative and has a minimum value at $x=2$. The answer is (c).
H. If we set $y=3^{x}$ then the equation $9^{x}-3^{x+1}=k$ now reads

$$
y^{2}-3 y-k=0
$$

This has solutions

$$
y=\frac{3 \pm \sqrt{9+4 k}}{2}
$$

which are real when $k \geqslant-9 / 4$. As $y=3^{x}$ then we further need that $y>0$ for x to be real, but this is not a problem as the larger root is clearly positive. The answer is (a).
I. We have

$$
S(1)+S(2)+S(3)+\cdots+S(99)=S(00)+S(01)+\cdots+S(99)
$$

and in the 100 two-digit numbers $00, \ldots, 99$ there are twenty $0 s$, twenty $1 s, \ldots$, twenty 9 s. So

$$
S(1)+S(2)+S(3)+\cdots+S(99)=20 \times(0+1+\cdots+9)=20 \times \frac{10}{2}(0+9)=900
$$

and the answer is (c).
J. Note that

$$
(3+\cos x)^{2} \geqslant(3-1)^{2}=4 ; \quad 4-2 \sin ^{8} x \leqslant 4
$$

So the equation will hold only when $\cos x=-1$ and $\sin x=0$. In the range $0 \leqslant x<2 \pi$ this only occurs at $x=\pi$. The answer is (b).
2. (i) [2 marks] A fairly obvious pair $\left(x_{1}, y_{1}\right)$ that satisfy $\left(x_{1}\right)^{2}-2\left(y_{1}\right)^{2}=1$ is $x_{1}=3$ and $y_{1}=2$.
(ii) [6 marks] Note

$$
\begin{array}{r}
\left(x_{n+1}\right)^{2}-2\left(y_{n+1}\right)^{2}=\left(x_{n}\right)^{2}-2\left(y_{n}\right)^{2} \\
\Longleftrightarrow\left(3 x_{n}+4 y_{n}\right)^{2}-2\left(a x_{n}+b y_{n}\right)^{2}=\left(x_{n}\right)^{2}-2\left(y_{n}\right)^{2} \\
\Longleftrightarrow\left(8-2 a^{2}\right)\left(x_{n}\right)^{2}+(24-4 a b) x_{n} y_{n}+\left(18-2 b^{2}\right)\left(y_{n}\right)^{2}=0
\end{array}
$$

In order to have $\left(x_{n+1}\right)^{2}-2\left(y_{n+1}\right)^{2}=\left(x_{n}\right)^{2}-2\left(y_{n}\right)^{2}$ we need

$$
2 a^{2}=8, \quad 4 a b=24, \quad 2 b^{2}=18
$$

We further require that $a, b>0$. We see that $a=2$ and $b=3$ solve all three equations.
(iii) [4 marks] Starting with $x_{1}=3, y_{1}=2$ we find:

$$
\begin{array}{rr}
x_{1}=3, & y_{1}=2 ; \\
x_{2}=3 \times 3+4 \times 2=17, & y_{2}=2 \times 3+3 \times 2=12 ; \\
x_{3}=3 \times 17+4 \times 12=99, & y_{3}=2 \times 17+3 \times 12=70 .
\end{array}
$$

So $X=99$ and $Y=70$ is such a pair.
(iv) [3 marks] For the generated sequences, $\left(x_{n}\right),\left(y_{n}\right)$, we have

$$
\left(x_{n}\right)^{2}-2\left(y_{n}\right)^{2}=1 \text { for each } n
$$

Also the integers x_{n} and y_{n} are getting increasingly larger because of how they are defined in (ii). So

$$
\left(\frac{x_{n}}{y_{n}}\right)^{2}-2=\frac{1}{\left(y_{n}\right)^{2}} \approx 0 \text { for large } n,
$$

and $x_{n} / y_{n} \approx \sqrt{2}$ as x_{n} and y_{n} are both positive.
3. (i) [3 marks] (A) is $-f(x)$; (B) is $f(-x) ; \quad(\mathrm{C})$ is $f(x-1)$.
(ii) [9 marks] As $2^{2 x-x^{2}}=2 \times 2^{-(x-1)^{2}}$ then the graph of $y=2^{2 x-x^{2}}$ is the graph of $y=2^{-x^{2}}$ translated to the right by 1 and stretched parallel to the y-axis by a factor of 2 .

(iii) [3 marks] $c=\frac{1}{2}$. The graph of $2^{-(x-c)^{2}}$ is the graph of $2^{-x^{2}}$ translated c to the right. The integral $I(c)$ represents the area under the graph between $0 \leqslant x \leqslant 1$. As the graph is symmetric/even and decreasing away from 0 then this area is maximised by having the apex half way along the interval $0 \leqslant x \leqslant 1$, i.e. at $x=1 / 2$ which occurs when $c=\frac{1}{2}$.
4. (i) [4 marks] We can complete the squares in $x^{2}-p x+y^{2}-q y=0$ to get

$$
\begin{equation*}
\left(x-\frac{p}{2}\right)^{2}+\left(y-\frac{q}{2}\right)^{2}=\frac{p^{2}+q^{2}}{4} \tag{1}
\end{equation*}
$$

which is the equation of the circle with centre: $(p / 2, q / 2)$ and area: $\pi\left(p^{2}+q^{2}\right) / 4$. Either by checking the original question, or the rearranged one, we can see that

$$
x^{2}-p x+y^{2}-q y=\left\{\begin{array}{cl}
0 & \text { at }(0,0), \\
p^{2}-p^{2}+0=0 & \text { at }(p, 0), \\
0+q^{2}-q^{2}=0 & \text { at }(0, q)
\end{array}\right.
$$

(ii) [5 marks] The area of $O P Q$ is $p q / 2$. So

$$
\frac{\text { area of circle } C}{\text { area of triangle } O P Q}=\left(\frac{\pi\left(p^{2}+q^{2}\right)}{4}\right) /\left(\frac{1}{2} p q\right)=\frac{\pi\left(p^{2}+q^{2}\right)}{2 p q} .
$$

Note

$$
\frac{\pi\left(p^{2}+q^{2}\right)}{2 p q} \geqslant \pi \Longleftrightarrow p^{2}+q^{2} \geqslant 2 p q \Longleftrightarrow(p-q)^{2} \geqslant 0
$$

proving the required inequality.
(iii) [6 marks] Rearranging

$$
\frac{\pi\left(p^{2}+q^{2}\right)}{2 p q}=2 \pi \Longleftrightarrow p^{2}+q^{2}=4 p q \Longleftrightarrow\left(\frac{p}{q}\right)^{2}-4\left(\frac{p}{q}\right)+1=0
$$

which is a quadratic equation in p / q, and so

$$
\frac{p}{q}=\frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3}
$$

Now $p / q=\tan O Q P, q / p=\tan O P Q$ and so

$$
\{\tan O Q P, \tan O P Q\}=\{2-\sqrt{3}, 2+\sqrt{3}\}
$$

with the order depending on whether $p<q$ or $p>q$.
[It happens that $\arctan (2-\sqrt{3})=\pi / 12$ and $\arctan (2+\sqrt{3})=5 \pi / 12$, but appreciation of this was not expected.]
5. (i) [3 marks] After the first/second/third students have gone by the doors look like:

Locker	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Student 1	O	O	O	O	O	O	O	O	O	O	O	O	O	O
Student 2	O	C	O	C	O	C	O	C	O	C	O	C	O	C
Student 3	O	C	C	C	O	O	O	C	C	C	O	O	O	C

We can see that the lockers now repeat in a pattern OCCCOO every 6 lockers. As $1000=$ $166 \times 6+4$ we have 166 repeats of this pattern and 4 remaining lockers that go OCCC. So there are $166 \times 3=498$ closed lockers amongst the complete cycles and 3 further in the incomplete cycle. That is, there are 501 closed lockers in all.
(ii) [4 marks] After the fourth student has gone by we have the following:

Locker	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Student 3	O	C	C	C	O	O	O	C	C	C	O	O	O	C
Student 4	O	C	C	O	O	O	O	O	C	C	O	C	O	C

with the pattern repeating every 12 lockers in the form OCCOOOOOCCOC. Each cycle contains 5 closed and 7 open doors. Now $1000=83 \times 12+4$ and so we have $83 \times 5=415$ closed lockers amongst the complete cycles and 2 further amongst the incomplete cycle OCCO. In all then there are 417 closed lockers.
(iii) [4 marks] Locker 100 starts off closed (as all lockers do) and then its state is altered by every nth student where n is a factor of 100 , i.e. by students $1,2,4,5,10,20,25,50,100$. So 9 students change the state and as this is odd then overall the state will have been changed to open.
(iv) [4 marks] Locker 1000 starts off closed (as all lockers do) and then its state is altered by every nth student where n divides 1000 and $n \leqslant 100$, i.e. by $1,2,4,5,8,10,20,25,40,50,100$. So 11 students change the door's state and as this is odd then overall the state will again have been changed to open.
6. (i) [5 marks] We have six possibilities:

$$
\text { A-B-C }=\text { St-L-Sw }, \quad \text { St-Sw-L }, \quad \text { L-St-Sw }, \quad \text { L-Sw-St }, \quad \text { Sw-L-St }, \quad \text { Sw-St-L. }
$$

The statement "I am the liar" cannot be made by St or L; this excludes the first four possibilities above.

The second statement "A is the liar" excludes Sw-St-L and so we are left with Sw-L-St. Answer: B is the Liar.
(The third statement is not actually needs but doesn't contradict the Sw-L-St arrangement.)
(ii) [5 marks] We have six possibilities:

$$
\text { P-Q-R }=\text { S-L-C, } \quad \text { S-C-L }, \quad \text { L-S-C }, \quad \text { L-C-S }, \quad \text { C-L-S }, \quad \text { C-S-L. }
$$

One of these statements is from a saint and so true. This means that the Liar has to follow the Saint in cyclic order and this means the only remaining possibilities are

$$
\mathrm{P}-\mathrm{Q}-\mathrm{R}=\mathrm{S}-\mathrm{L}-\mathrm{C}, \quad \mathrm{~L}-\mathrm{C}-\mathrm{S}, \quad \mathrm{C}-\mathrm{S}-\mathrm{L} .
$$

In the first two cases the Contrarian follows the Liar and so tells the truth. But this contradicts the actual statements so the only possibility remaining is C-S-L. Answer: R is the Liar.
(iii) [5 marks] We have six possibilities:

$$
\text { X-Y-Z }=\text { S-L-C, } \quad \text { S-C-L }, \quad \text { L-S-C, } \quad \text { L-C-S }, \quad \text { C-L-S, } \quad \text { C-S-L. }
$$

We will take these case by case:

- S-L-C: As the Contrarian is following the Liar, statement 3 had to be true but isn't in this case.
- L-C-S: As the Contrarian is following the Liar, statement 2 had to be true but isn't in this case.
- C-S-L: As the Contrarian is following the Liar, statement 4 had to be true but isn't in this case.
- S-C-L: In this case, statement 4 is a lie and so the Contrarian would tell the truth in Statement 5 but doesn't.
- C-L-S: The Contrarian tells the truth to begin contradicting his nature.
- L-S-C: This is the only remaining case and is consistent.

Answer: X is the Liar.
7. (i) [3 marks] The empty word has zero length which is even. If a new word is formed by Rule 2 then $a W b$ will have the same parity of length as W had. Also if U and V are even-length words then so will be $U V$. So new words formed from words of even length will themselves be even.
(ii) [5 marks]

Length 0 words: \varnothing.
Length 2 words: $a b$.
Length 4 words: $a b a b, a a b b$
Length 6 words: ababab, abaabb, aabbab, aababb, aaabbb
(iii) [3 marks] In \varnothing there are the same number of $a s$ and $b s$, namely none. If W has the same number then so will $a W b$, formed by Rule 2. Also if U and V each have the same number of a s and b s then so will $U V$. So new words formed by Rules 2 and 3 always have the same property.
(iv) [4 marks] A word of the form $a W b W^{\prime}$ will be of length $2 n+2$ if

$$
\text { length }(W)+\text { length }\left(W^{\prime}\right)=2 n
$$

So if W has length $2 k \leqslant 2 n$ then W^{\prime} has length $2(n-k)$. There are C_{k} words of the former length and C_{n-k} of the latter length. So we may generate $C_{k} C_{n-k}$ such words of length $2 n+2$ in this manner for each k. That is,

$$
\sum_{k=0}^{n} C_{k} C_{n-k}
$$

in all. Further, because the uniqueness of form in the given hint, all words of length $2 n+2$ are counted amongst these words and none are doubly counted. That is

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}
$$

